If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2-64=0
a = 8; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·8·(-64)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*8}=\frac{0-32\sqrt{2}}{16} =-\frac{32\sqrt{2}}{16} =-2\sqrt{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*8}=\frac{0+32\sqrt{2}}{16} =\frac{32\sqrt{2}}{16} =2\sqrt{2} $
| 95,000=10,000(1.05)7x | | h^2-76=5 | | 8*12=16x | | 27r^2=12 | | x^2-8x+16=21 | | 7x+48=4x+30 | | 16u^2-9=0 | | 28g^2=63 | | 11p+p+p-12p+2=19 | | 9x/5-2x/3=6 | | 4x+156=2x | | 57=6m−–9 | | 3.8x1.52=11.4 | | 12x+90=19x+146 | | 16d^2-78=-53 | | C(x)=0.09x+10.50 | | 11p+p+-12p+2=19 | | 5y+2=7y-6 | | 18x+15=51 | | B(×)=40.00-0.25x | | 3x+10=10x–12 | | 61+44+a=180 | | 3(-k-4)=k+7 | | 3a+3=45 | | 4(3a+5)-6=-24 | | x/28=-27 | | a+15=3a=11 | | 19+13t=-32 | | x+12=2x+21 | | 32d^2-98=0 | | 10n+3-11n=31 | | 5u^2-38=17 |